materi : integral tak tentu
kelas : 4
bab : lupa
selesaikan integral dibawah ↓
[tex]∫(8 {x}^{3} - {x}^{2} + 10)dx \\ [/tex]
-
-
- peraturan :
gunakan sifat seperti diquiz integral sebelumnya
Rumus:
[tex] \displaystyle \int ({ax}^{n} )dx = \frac{a}{n + 1} {x}^{n + 1} + c[/tex]
Jawab:
[tex] \displaystyle \int (8 {x}^{3} - {x}^{2} + 10)dx[/tex]
[tex] \displaystyle\frac{8}{3 + 1} x^{3 + 1} - \frac{1}{2 + 1} {x}^{2 + 1} + 10x[/tex]
[tex] \displaystyle\frac{8}{4} x^{4} - \frac{1}{3} {x}^{3} + 10x[/tex]
[tex] \displaystyle2 x^{4} - \frac{1}{3} {x}^{3} + 10x[/tex]
[tex] \displaystyle2 x^{4} - \frac{1}{3} {x}^{3} + 10x + C[/tex]
⠀ ⠀ ⠀
Detail jawaban
kelas: 11
mapel: matematika
materi: Integral Tak Tentu Fungsi Aljabar
kode kategorisasi: 11.2.10
~ Integral tak tentu
_______________
∫(8x³ - x² + 10)dx
= 8/3+1 x^3+1 - 1/2+1 x^2+1 + 10x
= 8/4x⁴ - 1/3x^3 + 10x
= 2x⁴ - ⅓x³ + 10x
= 2x⁴ - 1/3x³ + 10x + C
[answer.2.content]